
Dimensional Analysis



Why do we use dimensional analysis?

• It allows us to convert between 
different units for international 
cooperation

• We can simplify equations

• We can understand the relationship 
between different variables in a 
system



• Length [L] – Measures distance or size (example: 
meters)

• Mass [M] – Measures how much matter 
something has (example: kilograms)

• Time [T] – Measures the passage of events 
(example: seconds)

• Electric Current [I] – Measures the flow of electric 
charge (example: amperes)

• Temperature [Θ] – Measures heat or thermal 
energy (example: Celsius)

• Amount of Matter [N] – Measures quantity of 
particles (example: Moles)

• Luminous Intensity [J] – Measures the brightness 
of a light (example: Candelas) 

SI Units/Fundamental Variables



Dimensions

• All variables can be understood in 
terms of fundamental variables

• We can break down even the most 
complex units into fundamental 
values

For example:
Velocity = Distance ÷ Time

Distance = Length [L]
Time = Time [T]

Units of velocity = [L/T]



Example of breaking down a complex 
variable 
• We know that the variables effecting the period of a swinging 

pendulum are:

• T ∝ L * g

• Where:

• L = Length of pendulum
• g = Acceleration due to gravity
• T = Time period



Example of breaking down a complex 
variable 
• L = Length of pendulum
• g = Acceleration due to gravity
• T = Time period

• Length is already in its fundamental form [L]
• Time is already in its fundamental form [T]

• Acceleration is not in its fundamental form, so we must zoom in on it



Example of breaking down a complex 
variable 
• Acceleration is not in its fundamental form, so we must zoom in on it

• Acceleration = Distance/Time2

• Distance is a length [L] value

• Time is already in its fundamental form [T]

• So, acceleration = [𝐿𝐿/𝑇𝑇2]



Example of breaking down a complex 
variable 
• So, acceleration = [𝐿𝐿/𝑇𝑇2]

• T ∝ L * g

• [T] ∝ [L] * [𝐿𝐿/𝑇𝑇2]

• We can put it in an easier to read form by using the fact 𝑎𝑎
𝑥𝑥𝑏𝑏

= 𝑎𝑎𝑥𝑥−𝑏𝑏

•  [T] ∝ [L] ∗ [𝐿𝐿 ∗ 𝑇𝑇−2]



Example of finding an equation
•  [T] ∝ [L] ∗ [𝐿𝐿 ∗ 𝑇𝑇−2] <- This is not the equation for the pendulum, it still 

needs work

• We need to make sure that the exponents are the same on each side as 
currently it is not true 

• We need to split it again into its components and assign it exponents

•  [𝑇𝑇1] ∝ [𝐿𝐿𝑎𝑎] ∗ [𝐿𝐿𝑏𝑏 ∗ 𝑇𝑇−2𝑏𝑏] 

• We can neaten up by combining our 𝐿𝐿 terms

•  [𝑇𝑇1] ∝ [𝐿𝐿𝑎𝑎+𝑏𝑏] ∗ [𝑇𝑇−2𝑏𝑏] 



Example of finding an equation
•  [𝑇𝑇1] ∝ [𝐿𝐿𝑎𝑎+𝑏𝑏] ∗ [𝑇𝑇−2𝑏𝑏] 

• We need to look at our terms on either side

• We only have T on both sides, and L only on one side

• We can set them equal

• 𝑇𝑇1 = 𝑇𝑇−2𝑏𝑏

• 1 = 𝐿𝐿𝑎𝑎+𝑏𝑏



Example of finding an equation
• 𝑇𝑇1 = 𝑇𝑇−2𝑏𝑏

• 𝐿𝐿0 = 𝐿𝐿𝑎𝑎+𝑏𝑏

• For T we can work out:

• 1 = −2𝑏𝑏

• Therefore, we know 𝑏𝑏 = −1
2



Example of finding an equation
• 𝑏𝑏 = −1

2

• 1 = 𝐿𝐿𝑎𝑎+𝑏𝑏

• So 𝑎𝑎 − 1
2

= 0 because 𝑥𝑥0 = 1

• 𝑎𝑎 = 1
2

• 𝑇𝑇 ∝  𝐿𝐿1/2  ∗  𝑔𝑔−1/2



Example of finding an equation
• 𝑇𝑇 ∝  𝐿𝐿1/2  ∗  𝑔𝑔−1/2

• We know 𝑥𝑥1/2 = 𝑥𝑥

• a𝑥𝑥−𝑏𝑏 = 𝑎𝑎
𝑥𝑥𝑏𝑏

• 𝑇𝑇 ∝ 𝐿𝐿
𝑔𝑔

• With experimentation we could then work out any missing constants, 
for this we are missing 2𝜋𝜋



Dimensionless groups
In certain scenarios groups of variables can be put together in a group that cancels out, 
one example is the Reynolds number:

where:
• p = fluid density [M/L^3]
• v = velocity [L/T]
• D = pipe diameter [L]
• μ = viscosity [M/LT]

=

As we can see they all cancel out to be 
[Value]0 which equals 1 so its 1 * 1 * 1 which 
equals 1



What is a dimensionless group/number

• Dimensionless groups are groups of fundamental variables that cancel each other out

• This means that there are the same amount of positive and negative exponentials for 
each variable

• This means they are always equal to 1 no matter what you do



Why Dimensionless Groups Are 
Important
• Simplify complex problems→ Collapse multiple variables into fewer dimensionless 

parameters

• Check similarity and scaling→ Allows small-scale experiments (e.g., wind tunnels, water 
tanks) to represent full-scale systems

• Universal results→ Dimensionless numbers (e.g., Reynolds, Mach, Froude) apply across 
different systems and units

• Highlight dominant effects→ Show whether inertia, viscosity, gravity, or other forces control 
the system behaviour

• Enable comparison→ Engineers worldwide can compare results without worrying about unit 
systems



Example of a dimensionless group
• The Reynolds number is one of the most 

widely used dimensionless groups, 
particularly in the study of fluid dynamics.

• It is represented by [Re]

• It has the variables:
• p = fluid density [M/L^3]
• v = velocity [L/T]
• D = pipe diameter [L]
• μ = viscosity [M/LT]



Proving Reynolds Number
• We can put our dimensions into the 

equation to get our dimensional 
format

• We then use the negative exponent 
rule to bring terms onto either side 
of the divide

• We then do that again to get all the 
terms onto one line

=

=

=



Proving Reynolds Number

• Finally, we collect like-terms, and we 
should see all variables are to the 
power of 0

• Therefore as 1*1*1 = 1 it must be 
dimensionless

=

𝑀𝑀1 ∗ 𝑀𝑀−1 = 𝑀𝑀1−1 = 𝑀𝑀0 = 1

𝐿𝐿−3 ∗ 𝐿𝐿1 ∗ 𝐿𝐿1 ∗ 𝐿𝐿1 = 𝐿𝐿−3+1+1+1 = 𝐿𝐿0 = 1

𝑇𝑇−1 ∗ 𝑇𝑇1 = 𝑇𝑇−1+1 = 𝑇𝑇0 = 1



Buckingham π Theorem

• We wont always have easily found 
dimensionless groups

• So sometimes we have to find our 
own groups

• We can find out how many 
dimensionless groups an equation 
has using the Buckingham π 
Theorem

k = n - r
n = total number of variables
r = the number of fundamental variables



An example of working out 
dimensionless groups
Let’s use the Buckingham π theorem to analyse the drag force (𝐹𝐹𝑑𝑑​ ) acting on a sphere moving through a 
fluid.

The drag force (Fd) depends on:
1.Fluid velocity (V)
2.Fluid density (ρ)
3.Fluid viscosity (μ)
4.Sphere diameter (D)
We aim to find the 
dimensionless groups (π terms) 
that describe the relationship.

Step 1: List the Variables and Their Dimensions

Fd : Drag force [M*L/T2]
V : Velocity [L/T]
ρ : Density [M/L3]
μ : Viscosity [M/L*T]
D : Diameter [L]

Step 2: Count Variables and Fundamental Dimensions 
and apply the theorem

Variables: 5 (Fd, V, ρ, μ, D)
Fundamentals: 3 (M, L, T)

k = n – r
K = 5 – 3
K = 2



An example of working out 
dimensionless groups (Continued)
Step 3: Find repeating variables

Note learning 
repeating variables 

takes time, you learn 
what variables are 

common in a subject 
area

Common in fluid dynamics are ρ, V and D

First dimensionless group often contains the dependent variable (the 
variable which we are studying, in this case it is 𝐹𝐹𝑑𝑑)

Group 1: 𝐹𝐹𝑑𝑑​, ρ, V and D
Group 2: μ, ρ, V and D

Step 4: Work out the first dimensionless group

Group 1: 𝐹𝐹𝑑𝑑​ * ρ * V * D
Group 1: [M*L/T2] * [M/L3]a * [L/T]b * [L]c

Group 1: M * L  * T-2 * Ma * L-3a * Lb * T-b * Lc

For M: 1 + a = 0 -> a = -1
For L: 1-3a+b+c = 0
For T: -2-b = 0 -> b = -2

Put a and b into L to get c:
1+3-2+c = 0
c = -2

Group 1: 𝐹𝐹𝑑𝑑​ * ρa * Vb * Dc

Group 1: 𝐹𝐹𝑑𝑑​ * ρ-1 * V-2 * D-2



An example of working out 
dimensionless groups (Continued)
Step 5: Work out the second dimensionless group

Group 2: μ * ρ * V * D
Group 2: [M/L*T] * [M/L3]a * [L/T]b * [L]c

Group 2: M * L-1  * T-1 * Ma * L-3a * Lb * T-b * Lc

For M: 1 + a = 0 -> a = -1
For L: -1-3a+b+c = 0
For T: -1-b = 0 -> b = -1

Put a and b into L to get c:
-1+3-1+c = 0
c = -1

Group 2: μ​ * ρa * Vb * Dc

Group 2: μ * ρ-1 * V-1 * D-1

Step 6: Check each group is dimensionless by writing 
it out

Step 7: Write out the relationship



Understanding dimensionless 
groups(Continued)
Step 8: Analyse the dimensionless groups we get (this step isn’t necessary but is good to help understand)

Area

This is the inverse Reynolds 
number (1/Re)
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