

Dimensional Analysis

& **UNIVERSITY
CENTRE**

Why do we use dimensional analysis?

- It allows us to convert between different units for international cooperation
- We can simplify equations
- We can understand the relationship between different variables in a system

SI Units/Fundamental Variables

- **Length [L]** – Measures distance or size (example: meters)
- **Mass [M]** – Measures how much matter something has (example: kilograms)
- **Time [T]** – Measures the passage of events (example: seconds)
- **Electric Current [I]** – Measures the flow of electric charge (example: amperes)
- **Temperature [Θ]** – Measures heat or thermal energy (example: Celsius)
- **Amount of Matter [N]** – Measures quantity of particles (example: Moles)
- **Luminous Intensity [J]** – Measures the brightness of a light (example: Candelas)

Dimensions

- All variables can be understood in terms of fundamental variables
- We can break down even the most complex units into fundamental values

For example:

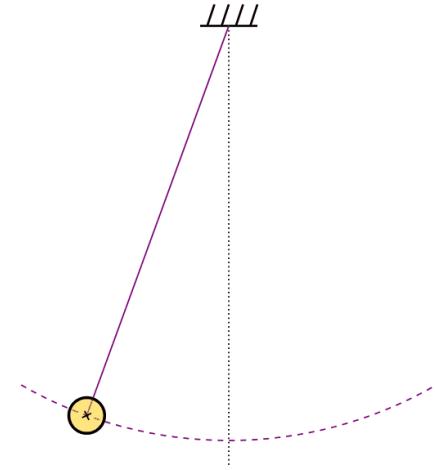
Velocity = Distance \div Time

Distance = Length [L]
Time = Time [T]

Units of velocity = [L/T]

Example of breaking down a complex variable

- We know that the variables effecting the period of a swinging pendulum are:
- $T \propto L * g$
- Where:
 - L = Length of pendulum
 - g = Acceleration due to gravity
 - T = Time period

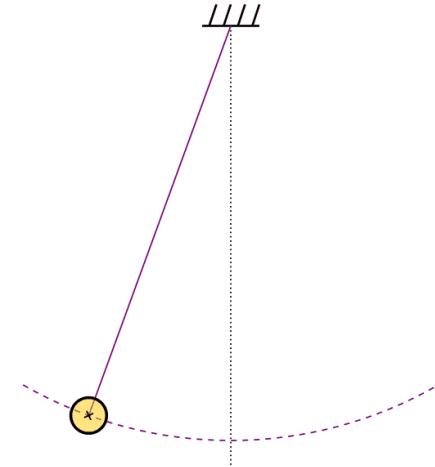


Example of breaking down a complex variable

- L = Length of pendulum
- g = Acceleration due to gravity
- T = Time period

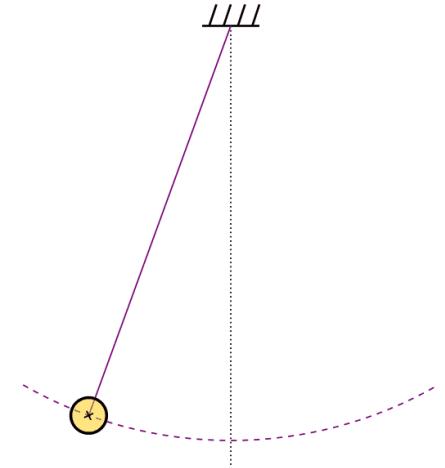
- Length is already in its fundamental form [L]
- Time is already in its fundamental form [T]

- Acceleration is not in its fundamental form, so we must zoom in on it



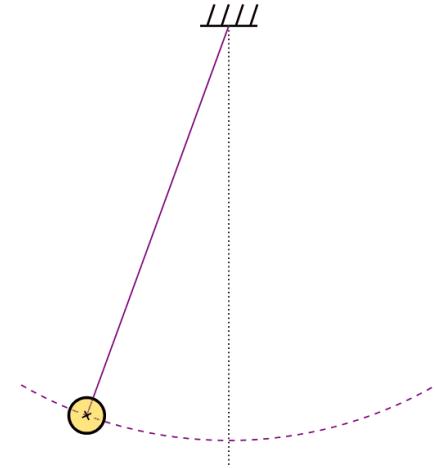
Example of breaking down a complex variable

- Acceleration is not in its fundamental form, so we must zoom in on it
- Acceleration = Distance/Time²
- Distance is a **length [L]** value
- Time is already in its fundamental form [T]
- So, acceleration = $[L/T^2]$



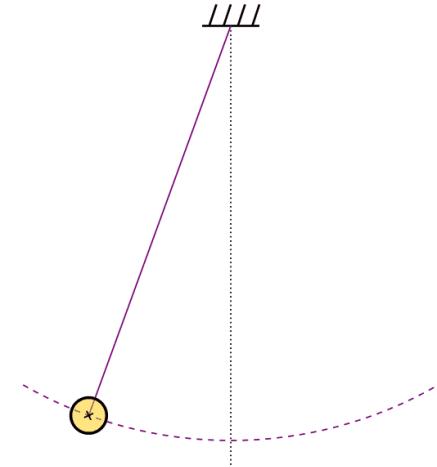
Example of breaking down a complex variable

- So, acceleration = $[L/T^2]$
- $T \propto L * g$
- $[T] \propto [L] * [L/T^2]$
- We can put it in an easier to read form by using the fact $\frac{a}{x^b} = ax^{-b}$
- $[T] \propto [L] * [L * T^{-2}]$



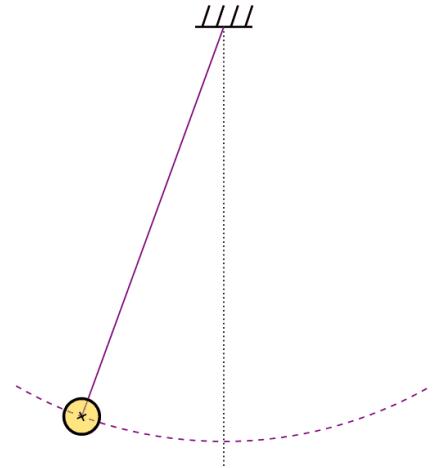
Example of finding an equation

- $[T] \propto [L] * [L * T^{-2}]$ <- This is not the equation for the pendulum, it still needs work
- We need to make sure that the exponents are the same on each side as currently it is not true
- We need to split it again into its components and assign it exponents
- $[T^1] \propto [L^a] * [L^b * T^{-2b}]$
- We can neaten up by combining our L terms
- $[T^1] \propto [L^{a+b}] * [T^{-2b}]$



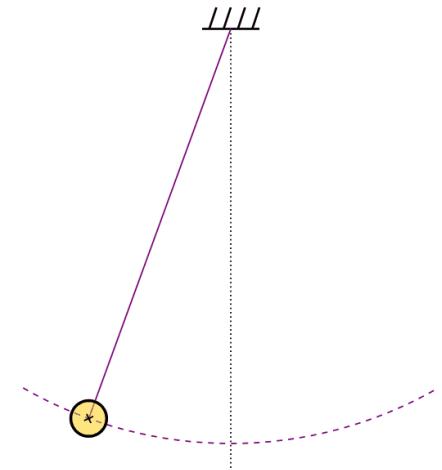
Example of finding an equation

- $[T^1] \propto [L^{a+b}] * [T^{-2b}]$
- We need to look at our terms on either side
- We only have T on both sides, and L only on one side
- We can set them equal
- $T^1 = T^{-2b}$
- $1 = L^{a+b}$



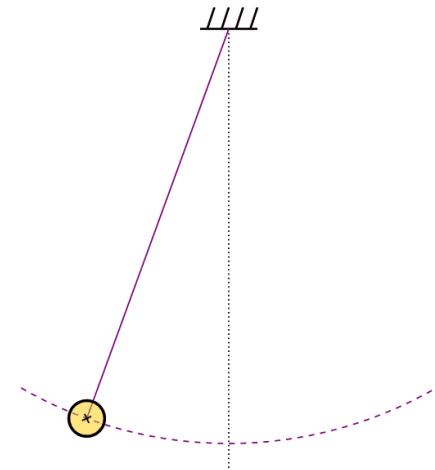
Example of finding an equation

- $T^1 = T^{-2b}$
- $L^0 = L^{a+b}$
- For T we can work out:
- $1 = -2b$
- Therefore, we know $b = -\frac{1}{2}$



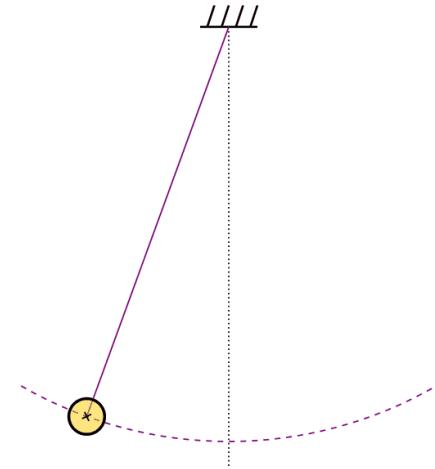
Example of finding an equation

- $b = -\frac{1}{2}$
- $1 = L^{a+b}$
- So $a - \frac{1}{2} = 0$ because $x^0 = 1$
- $a = \frac{1}{2}$
- $T \propto L^{1/2} * g^{-1/2}$



Example of finding an equation

- $T \propto L^{1/2} * g^{-1/2}$
- We know $x^{1/2} = \sqrt{x}$
- $ax^{-b} = \frac{a}{x^b}$
- $T \propto \sqrt{\frac{L}{g}}$
- With experimentation we could then work out any missing constants, for this we are missing 2π



$$T = 2\pi \sqrt{\frac{L}{g}}$$

Dimensionless groups

In certain scenarios groups of variables can be put together in a group that cancels out, one example is the Reynolds number:

$$[Re] = \frac{[M/L^3] \cdot [L/T] \cdot [L]}{[M/LT]} = [1] \quad = \quad [Re] = \frac{[M \cdot L^{-3}] \cdot [L \cdot T^{-1}] \cdot [L]}{[M \cdot L^{-1} \cdot T^{-1}]}$$

$$Re = \frac{\rho v D}{\mu}$$

where:

- ρ = fluid density $[M/L^3]$
- v = velocity $[L/T]$
- D = pipe diameter $[L]$
- μ = viscosity $[M/LT]$

$$[Re] = M \cdot L^{-3} \cdot L \cdot T^{-1} \cdot L \cdot M^{-1} \cdot L^1 \cdot T^1$$

As we can see they all cancel out to be $[Value]^0$ which equals 1 so its $1 * 1 * 1$ which equals 1

What is a dimensionless group/number

- Dimensionless groups are groups of fundamental variables that cancel each other out
- This means that there are the same amount of positive and negative exponentials for each variable
- This means they are always equal to 1 no matter what you do

Why Dimensionless Groups Are Important

- **Simplify complex problems** → Collapse multiple variables into fewer dimensionless parameters
- **Check similarity and scaling** → Allows small-scale experiments (e.g., wind tunnels, water tanks) to represent full-scale systems
- **Universal results** → Dimensionless numbers (e.g., Reynolds, Mach, Froude) apply across different systems and units
- **Highlight dominant effects** → Show whether inertia, viscosity, gravity, or other forces control the system behaviour
- **Enable comparison** → Engineers worldwide can compare results without worrying about unit systems

Example of a dimensionless group

- The Reynolds number is one of the most widely used dimensionless groups, particularly in the study of fluid dynamics.
- It is represented by [Re]
- It has the variables:
 - ρ = fluid density [M/L^3]
 - v = velocity [L/T]
 - D = pipe diameter [L]
 - μ = viscosity [M/LT]

$$Re = \frac{\rho v D}{\mu}$$

Proving Reynolds Number

- We can put our dimensions into the equation to get our dimensional format
- We then use the negative exponent rule to bring terms onto either side of the divide
- We then do that again to get all the terms onto one line

$$\begin{aligned} Re &= \frac{\rho v D}{\mu} = \frac{[M/L^3] \cdot [L/T] \cdot [L]}{[M/LT]} : \\ &= \frac{[M \cdot L^{-3}] \cdot [L \cdot T^{-1}] \cdot [L]}{[M \cdot L^{-1} \cdot T^{-1}]} \\ &= M \cdot L^{-3} \cdot L \cdot T^{-1} \cdot L \cdot M^{-1} \cdot L^1 \cdot T^1 \end{aligned}$$

Proving Reynolds Number

- Finally, we collect like-terms, and we should see all variables are to the power of 0

$$= M \cdot L^{-3} \cdot L \cdot T^{-1} \cdot L \cdot M^{-1} \cdot L^1 \cdot T^1$$

$$M^1 * M^{-1} = M^{1-1} = M^0 = 1$$

- Therefore as $1*1*1 = 1$ it must be dimensionless

$$L^{-3} * L^1 * L^1 * L^1 = L^{-3+1+1+1} = L^0 = 1$$

$$T^{-1} * T^1 = T^{-1+1} = T^0 = 1$$

Buckingham π Theorem

- We won't always have easily found dimensionless groups
- So sometimes we have to find our own groups
- We can find out how many dimensionless groups an equation has using the Buckingham π Theorem

$$k = n - r$$

n = total number of variables

r = the number of fundamental variables

An example of working out dimensionless groups

Let's use the Buckingham π theorem to analyse the drag force (F_d) acting on a sphere moving through a fluid.

The drag force (F_d) depends on:

1. Fluid velocity (V)
2. Fluid density (ρ)
3. Fluid viscosity (μ)
4. Sphere diameter (D)

We aim to find the dimensionless groups (π terms) that describe the relationship.

Step 1: List the Variables and Their Dimensions

F_d : Drag force [$M \cdot L/T^2$]

V : Velocity [L/T]

ρ : Density [M/L^3]

μ : Viscosity [$M/L \cdot T$]

D : Diameter [L]

Step 2: Count Variables and Fundamental Dimensions and apply the theorem

Variables: 5 (F_d , V, ρ , μ , D)

Fundamentals: 3 (M, L, T)

$$k = n - r$$

$$K = 5 - 3$$

$$K = 2$$

An example of working out dimensionless groups (Continued)

Step 3: Find repeating variables

Common in fluid dynamics are ρ , V and D

First dimensionless group often contains the dependent variable (the variable which we are studying, in this case it is F_d)

Group 1: F_d , ρ , V and D

Group 2: μ , ρ , V and D

Step 4: Work out the first dimensionless group

Group 1: $F_d * \rho * V * D$

Group 1: $[M*L/T^2] * [M/L^3]^a * [L/T]^b * [L]^c$

Group 1: $M * L * T^{-2} * M^a * L^{-3a} * L^b * T^{-b} * L^c$

For M: $1 + a = 0 \rightarrow a = -1$

For L: $1-3a+b+c = 0$

For T: $-2-b = 0 \rightarrow b = -2$

Put a and b into L to get c:

$$1+3-2+c = 0$$

$$c = -2$$

Note learning repeating variables takes time, you learn what variables are common in a subject area

Group 1: $F_d * \rho^a * V^b * D^c$

Group 1: $F_d * \rho^{-1} * V^2 * D^{-2}$

$$\pi_1 = \frac{F_d}{\rho V^2 D^2}$$

An example of working out dimensionless groups (Continued)

Step 5: Work out the second dimensionless group

$$\text{Group 2: } \mu * \rho * V * D$$

$$\text{Group 2: } [M/L^*T] * [M/L^3]^a * [L/T]^b * [L]^c$$

$$\text{Group 2: } M * L^{-1} * T^{-1} * M^a * L^{-3a} * L^b * T^{-b} * L^c$$

$$\text{For } M: 1 + a = 0 \rightarrow a = -1$$

$$\text{For } L: -1 - 3a + b + c = 0$$

$$\text{For } T: -1 - b = 0 \rightarrow b = -1$$

Put a and b into L to get c:

$$-1 + 3 - 1 + c = 0$$

$$c = -1$$

$$\text{Group 2: } \mu * \rho^a * V^b * D^c$$

$$\text{Group 2: } \mu * \rho^{-1} * V^{-1} * D^{-1}$$

$$\pi_2 = \frac{\mu}{\rho V D}$$

Step 6: Check each group is dimensionless by writing it out

Step 7: Write out the relationship

$$\pi_1 = f(\pi_2)$$

$$\frac{F_d}{\rho V^2 D^2} = f\left(\frac{\mu}{\rho V D}\right)$$

Understanding dimensionless groups(Continued)

Step 8: Analyse the dimensionless groups we get (this step isn't necessary but is good to help understand)

$$\pi_2 = \frac{\mu}{\rho V D}$$

This is the inverse Reynolds number (1/Re)

$$\pi_1 = \frac{F_d}{\rho V^2 D^2}$$

Area